1,534 research outputs found

    3D Dune Skeleton Model as a Coupled Dynamical System of 2D Cross-Sections

    Full text link
    To analyze theoretically the stability of the shape and the migration process of transverse dunes and barchans, we propose a {\it skeleton model} of 3D dunes described with coupled dynamics of 2D cross-sections. First, 2D cross-sections of a 3D dune parallel to the wind direction are extracted as elements of a skeleton of the 3D dune, hence, the dynamics of each and interaction between them is considered. This model simply describes the essential dynamics of 3D dunes as a system of coupled ordinary differential equations. Using the model we study the stability of the shape of 3D transversal dunes and their deformation to barchans depending on the amount of available sand in the dune field, sand flow in parallel and perpendicular to wind direction.Comment: 6 pages, 6 figures, lette

    The magnetic structure of the intermelallic compounds in the cubic Laves phase (C15) crystal

    Get PDF
    Magnetic structure of intermetallic compounds of rare earth and 3d transition metal with the C15 structure is studied on the basis of the classical Heisenberg model. By making use of the Lyons-Kaplan method, magnetic phase diagram is calculated with respect to the states with the modulation wave vector Q equivalent to [0,0,0] to obtain seven types of spin structure, and their stability is compared with screw structures of Q parallel with [0,0,1], [1,1,0] and [1,1,1]. The stable region of the Q = [0,0,0] states is limited most drastically by the modulation of Q ∥ [1,1,0].Article信州大学理学部紀要 30(1): 7-23(1995)departmental bulletin pape

    Development of laser guided deep-hole measurement system: adjustment to a smaller size hole

    Get PDF
    Deep holes are bored with the meter, millimeter, and micrometer level diameters in engineering. Examples of such holes with large 100-millimeter-level diameters and meter-level lengths are the rotation shafts of jet engines, generators and cannons. Holes with normal 10-millimeter-level diameters and lengths of several hundred millimeters are used for the main spindles of machines, the small cylinder in plastic injection molding, the tube sheet for heat exchanger, and guns. To measure such components the proposed measurement system consists of a measurement head in order to scan hole wall, a laser interferometer for measuring surface parameters of the hole and an optical device at the backside for detecting attitude of the measurement head. As a result of experimental analysis, it is observed that deephole having small diameter and longlength can be measured automatically by the new developed measurement system

    Human-induced marine ecological degradation: micropaleontological perspectives

    Get PDF
    We analyzed published downcore microfossil records from 150 studies and reinterpreted them from an ecological degradation perspective to address the following critical but still imperfectly answered questions: (1) How is the timing of human-induced degradation of marine ecosystems different among regions? (2) What are the dominant causes of human-induced marine ecological degradation? (3) How can we better document natural variability and thereby avoid the problem of shifting baselines of comparison as degradation progresses over time? The results indicated that: (1) ecological degradation in marine systems began significantly earlier in Europe and North America ( approximately 1800s) compared with Asia (post-1900) due to earlier industrialization in European and North American countries, (2) ecological degradation accelerated globally in the late 20th century due to post-World War II economic growth, (3) recovery from the degraded state in late 20th century following various restoration efforts and environmental regulations occurred only in limited localities. Although complex in detail, typical signs of ecological degradation were diversity decline, dramatic changes in total abundance, decrease in benthic and/or sensitive species, and increase in planktic, resistant, toxic, and/or introduced species. The predominant cause of degradation detected in these microfossil records was nutrient enrichment and the resulting symptoms of eutrophication, including hypoxia. Other causes also played considerable roles in some areas, including severe metal pollution around mining sites, water acidification by acidic wastewater, and salinity changes from construction of causeways, dikes, and channels, deforestation, and land clearance. Microfossils enable reconstruction of the ecological history of the past 10(2)-10(3) years or even more, and, in conjunction with statistical modeling approaches using independent proxy records of climate and human-induced environmental changes, future research will enable workers to better address Shifting Baseline Syndrome and separate anthropogenic impacts from background natural variability.published_or_final_versio

    Analysis of Class-DE PA Using MOSFET Devices With Non-Equally Grading Coefficient

    Get PDF

    Computationally efficient algorithms for the two-dimensional Kolmogorov-Smirnov test

    Get PDF
    Goodness-of-fit statistics measure the compatibility of random samples against some theoretical or reference probability distribution function. The classical one-dimensional Kolmogorov-Smirnov test is a non-parametric statistic for comparing two empirical distributions which defines the largest absolute difference between the two cumulative distribution functions as a measure of disagreement. Adapting this test to more than one dimension is a challenge because there are 2^d-1 independent ways of ordering a cumulative distribution function in d dimensions. We discuss Peacock's version of the Kolmogorov-Smirnov test for two-dimensional data sets which computes the differences between cumulative distribution functions in 4n^2 quadrants. We also examine Fasano and Franceschini's variation of Peacock's test, Cooke's algorithm for Peacock's test, and ROOT's version of the two-dimensional Kolmogorov-Smirnov test. We establish a lower-bound limit on the work for computing Peacock's test of Omega(n^2.lg(n)), introducing optimal algorithms for both this and Fasano and Franceschini's test, and show that Cooke's algorithm is not a faithful implementation of Peacock's test. We also discuss and evaluate parallel algorithms for Peacock's test

    Nucleotide– and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics

    Get PDF
    Using cryo-electron microscopy, we characterize the architecture of microtubules assembled from Schizosaccharomyces pombe tubulin, in the presence and absence of their regulatory partner Mal3. Cryo-electron tomography reveals that microtubules assembled from S. pombe tubulin have predominantly B-lattice interprotofilament contacts, with protofilaments skewed around the microtubule axis. Copolymerization with Mal3 favors 13 protofilament microtubules with reduced protofilament skew, indicating that Mal3 adjusts interprotofilament interfaces. A 4.6-Å resolution structure of microtubule-bound Mal3 shows that Mal3 makes a distinctive footprint on the S. pombe microtubule lattice and that unlike mammalian microtubules, S. pombe microtubules do not show the longitudinal lattice compaction associated with EB protein binding and GTP hydrolysis. Our results firmly support a structural plasticity view of microtubule dynamics in which microtubule lattice conformation is sensitive to a variety of effectors and differently so for different tubulins

    Yukawa Couplings involving Excited Twisted Sector States for ZN{\bf Z}_N and ZM×ZN{\bf Z}_M\times {\bf Z}_N Orbifolds

    Full text link
    We study the Yukawa couplings among excited twist fields which might arise in the low-energy effective field theory obtained by compactifying the heterotic string on ZN{\bf Z}_N and ZM×ZN{\bf Z}_M\times {\bf Z}_N orbifolds.Comment: SUSX--TH--93/12, 31 page

    Majorana neutrino versus Dirac neutrino in e+eW+W{\rm e}^{+}{\rm e}^{-} \to {\rm W}^{+}{\rm W}^{-} through radiative corrections

    Get PDF
    Radiative corrections to e+e ⁣W+W{\rm e}^{+}{\rm e}^{-}\! \rightarrow {\rm W}^{+}{\rm W}^{-} from Majorana neutrinos are studied in the context of the see-saw mechanism. Focusing on the effects of the fourth generation neutrinos, we calculate W-pair form factors, the differential cross sections and the forward-backward asymmetries for the polarized electrons at one-loop level. The behaviour of the form factors at the threshold of Majorana particle pair productions is found to differ from that of Dirac particle pair productions. In the cross section for unpolarized electrons, the radiative corrections, depending on the mass parameters of the see-saw mechanism, are found to be 0.5%\sim 0.5\% at the energy range of the LEP200 and the next generation linear colliders.Comment: 10 pages, Latex, 4 figures(no included, available on request
    corecore